A WO N

Pure Reasoning in Isabelle/lIsar

Makarius Wenzel
TU Munchen

January 2009

. The Pure framework
. Pure rules everywhere
. lsar statements

. Inductive definitions

Introduction

Aims

e improved understanding how Isabelle and Isar really work
(Isabelle = HOL)

e natural reasoning, less formal overhead in applications
e native representations of statements and definitions
e reduced demand for “logical encodings”

e less arbitrary “automated reasoning”

Introduction

Isabelle/Pure framework (Paulson 1989)

Logical framework: 3 levels of A-calculus

a = terms depending on terms
Nz. Bx proofs depending on terms
A =— B proofs depending on proofs

Rule composition: via higher-order unification
resolution: mixed forward-back chaining

assumption: closing branches

Note: arbitrary nesting of rules

Introduction

Isabelle/Isar proof language (Wenzel 1999)

Main idea: Pure rules turned into proof schemes

from facts; have props using factss
proof (rule)
body

ged

Solving sub-problems: within body

fix vars
assume props
show props (proof)

Abbreviations:
then from this
proof ged

Introduction

The Pure framework

Pure syntax and primitive rules

= function type constructor
N = (o = prop) = prop universal quantifier
— :: prop = prop = prop implication

[z ::]
b(az):::ﬁ bra=03 a:«
Mo b(z) o= g) b(a) :: B (=E)
[]
P (AD A (Ag)
A
iZp=n A= A=

The Pure framework

Pure equality

== Qa = prop

Axioms for t = u: «, B, n, refl, subst, ext, iff

Unification: solving equations modulo a(n
e Huet: full higher-order unification (infinitary enumeration!)
e Miller: higher-order patterns (unique result)

(Example: Pure primitives)

The Pure framework

Hereditary Harrop Formulas (HHF)

Define the following sets:

T variables
A atomic formulae (without =/A)
ANzt A* = A Horn Clauses

HY Nx*. H* =—> A Hereditary Harrop Formulas (HHF)

Conventions for results:
e outermost quantification Az. B z is rephrased via schematic
variables B ?x

e equivalence (A = (Az. Bz)) = (Axz. A = B x) produces
canonical HHF

The Pure framework 3

Pure rules everywhere

Examples:

n][P
PO P (Siuc n)

Pn

Pure rules everywhere

Natural Deduction rules

A— B —>AANB

(A— B)— A — B

PO=— (An. Pn = P (Sucn)) = Pn

10

Implicit rules in Isar proofs

have A and B (proof)
then have A A B ..

have A — B
proof (rule impl)
assume A
show B (proof)
ged

fix n :: nat
have P n
proof (induct n)
show P 0 (proof)
fix n assume P n
show P (Suc n) (proof)
ged

Pure rules everywhere

Goal state as rule

Protective marker:

+# . prop = prop
= MNA 2 prop. A

Initialization:

O — #C(z’nz’t)

General situation: subgoals imply main goal

By = ...=— B, = #C(C

Finalization:

(Example: Goal directed proof and rule composition)

Pure rules everywhere

12

Rule composition (back-chaining)

A= B B'= C B =B'Y
A —= C0

(compose)

Pure rules everywhere

13

General higher-order resolution

rulee Ad=— Ba
goal: (ANZ. HZ = B'%) = C
goal unifier: (A\Z. B (@ £))0 = B'6 .
= = (resolution)
(N2. HX = A (@ X)) = C¥0
goal: (NZ. HZ = A %) = C
assm unifier: A6 = H;0 (for some H;) .
o (assumption)

Both inferences are omnipresent in Isabelle/Isar:
e resolution: e.g. OF attribute, rule method, also command

e assumption: e.g. assumption method, implicit proof ending

Pure rules everywhere 14

Application: calculational reasoning

alsop = note calculation = this
also,, 1 = note calculation = trans [OF calculation this|
finally = also from calculation
Example:
have a = b (proof)
also have ... = ¢ (proof)
also have ... = d (proof)

finally have a = d .

Note: term “..." abbreviates the argument of the last statement

(Example: Calculations)

Pure rules everywhere 15

Isar statements

From contexts to statements

Idea:

e Avoid unwieldy logical formula, i.e.
no object-logic: Vo. A x — B x
no meta-logic: A\z. A x = B x

e Use native Isar context & conclusion elements
fixes x assumes A x shows B x correspondingtoz, Ax - Bz

Example:

theorem
fixes z and y
assumes a: Az and b: By
shows C' z y

proof —

from o and b show ?thesis (proof)
ged

Isar statements 17

Proof context elements

Universal: fix and assume

{ {

fix = assume A

have B = (proof) have B (proof)
¥ ¥
note (Az. B z) note (A — B)

Existential: obtain

{

obtain a where B a (proof)
have C' (proof)

}

note (C)

Isar statements

18

Clausal Isar statements

Big clauses: fixes = assumes A x shows B z
based on primitive Isar context elements

Dual clauses: obtains a where B a | ... expands to
fixes thesis assumes N\a. B a = thesis and ... shows thesis

Small clauses: B z if A z for = as second-level rule structure
Nz. A x = B x within big clauses

Experimental!

Isar statements

19

Example: Isar statements for predicate logic

theorem tmpl: assumes B if A shows A — B
theorem impFE: assumes A — B and A shows B

theorem ¢lll: assumes B x for £ shows V. B z
theorem «l//E: assumes V 2. B x shows B «

theorem conjl: assumes A and B shows A A B
theorem conjE: assumes A A B obtains A and B

theorem disjl: assumes A shows A vV B
theorem disjl5: assumes B shows A V B

theorem disjE: assumes A V B obtains A | B

theorem ex/: assumes B a shows dz. B z
theorem exFE: assumes Jdx. B x obtains a where B «

Isar statements

20

Inductive definitions

Primitive definitions

Definitional approach: everything produced from first principles
(of Higher-Order Logic, Set-Theory etc.)

Example: composition of relations

definition comp :: (a« = B = bool) = (8 = v = bool) = a = v = bool
where comp R Sz z «— (Jy. Rzy N Sy=z)

theorem compl: Rz y — Syz —=— comp RSz =z
unfolding comp-def by auto

theorem compE: comp R Sz 2z — (ANy-. Rzy —= Syz — () = C
unfolding comp-def by auto

Question: Can we avoid this redundancy?

Inductive definitions 22

Inductive definitions

Idea: the least predicate closed under user-specified rules
(according to Knaster-Tarski)

Example: transitive-reflexive closure

inductive trcl for R :: a« = o = bool
where
trcl R x x for x
| trel Rx 2z if Rxyand trel Ry z for x y 2

Derived rules based on internal definition:

trel =

AR. Ifp (Ap 1 2.
(z.z1 =2 Nz =12)V
(Jrzyz.x1=xANz2=2ANRxyApy2z))

Inductive definitions

23

Non-recursive inductive definitions

Example (1): composition of relations (concise version)

inductive comp for R :: o« = 3 = bool and S :: B = v = bool
where comp R Sz zif Rxyand Sy z for x y 2

Example (2): logical connectives (imitating Coq)

inductive and for A B :: bool
where and A B if A and B

inductive or for A B :: bool
where or A Bif A | or A BifB

inductive exists for B :: o = bool
where exists B if B a for a

(Example: Inductive definitions)

Inductive definitions

24

Conclusion

Summary

Advantages of native Pure/lsar rules:
e Scalable specifications

e Reduced complexity for formal proofs in

1. proving / using the results
2. structured Isar proofs / tactic scripts / internal proof objects

Consequences:
e Reduced formality — towards “logic-free reasoning”
e May have to unlearn predicate logic!

Conclusion

26

Related Work

e Proofs:
— Continuation of well-known Natural Deduction concepts
(Gentzen 1935, and others)
— Common principles shared with A-Prolog (Miller 1991)
e Statements:
— Coherent logic (cf. Coquand, Bezem, dates back to Skolem)
— Euclid’s Elements (cf. Avigad)

e Definitions:

— Inductive definitions in Coq, HOL, Isabelle etc.
(many variations)

Conclusion 27

