
Pure Reasoning in Isabelle/Isar

Makarius Wenzel
TU München

January 2009

1. The Pure framework

2. Pure rules everywhere

3. Isar statements

4. Inductive definitions

Introduction

Aims

• improved understanding how Isabelle and Isar really work
(Isabelle 6= HOL)

• natural reasoning, less formal overhead in applications

• native representations of statements and definitions

• reduced demand for “logical encodings”

• less arbitrary “automated reasoning”

Introduction 2

Isabelle/Pure framework (Paulson 1989)

Logical framework: 3 levels of λ-calculus

α ⇒ β terms depending on terms∧
x . B x proofs depending on terms

A =⇒ B proofs depending on proofs

Rule composition: via higher-order unification

resolution: mixed forward-back chaining

assumption: closing branches

Note: arbitrary nesting of rules

Introduction 3

Isabelle/Isar proof language (Wenzel 1999)

Main idea: Pure rules turned into proof schemes

from facts1 have props using facts2

proof (rule)
body

qed

Solving sub-problems: within body
fix vars
assume props
show props 〈proof 〉

Abbreviations:
then ≡ from this

.. ≡ proof qed

Introduction 4

The Pure framework

Pure syntax and primitive rules

⇒ function type constructor∧
:: (α ⇒ prop) ⇒ prop universal quantifier

=⇒ :: prop ⇒ prop ⇒ prop implication

[x :: α]....
b(x) :: β

λx . b(x) :: α ⇒ β
(⇒I) b :: α ⇒ β a :: α

b(a) :: β
(⇒E)

[x]....
B(x)V
x . B(x)

(
V

I)
V

x . B(x)

B(a)
(
V

E)

[A]....
B

A =⇒ B (=⇒I) A =⇒ B A
B (=⇒E)

The Pure framework 6

Pure equality

≡ :: α ⇒ α ⇒ prop

Axioms for t ≡ u: α, β, η, refl , subst , ext , iff

Unification: solving equations modulo αβη

• Huet: full higher-order unification (infinitary enumeration!)

• Miller: higher-order patterns (unique result)

(Example: Pure primitives)

The Pure framework 7

Hereditary Harrop Formulas (HHF)

Define the following sets:

x variables
A atomic formulae (without =⇒/

∧
)∧

x∗. A∗ =⇒ A Horn Clauses

H
def=

∧
x∗. H∗ =⇒ A Hereditary Harrop Formulas (HHF)

Conventions for results:

• outermost quantification
∧

x . B x is rephrased via schematic
variables B ?x
• equivalence (A =⇒ (

∧
x . B x)) ≡ (

∧
x . A =⇒ B x) produces

canonical HHF

The Pure framework 8

Pure rules everywhere

Natural Deduction rules

Examples:

A B
A ∧ B A =⇒ B =⇒ A ∧ B

[A]....
B

A → B (A =⇒ B) =⇒ A → B

P 0

[n][P n]....
P (Suc n)
P n P 0 =⇒ (

V
n. P n =⇒ P (Suc n)) =⇒ P n

Pure rules everywhere 10

Implicit rules in Isar proofs

have A and B 〈proof 〉
then have A ∧ B ..

have A → B
proof (rule impI)

assume A
show B 〈proof 〉

qed

fix n :: nat
have P n
proof (induct n)

show P 0 〈proof 〉
fix n assume P n
show P (Suc n) 〈proof 〉

qed

Pure rules everywhere 11

Goal state as rule

Protective marker:
:: prop ⇒ prop
≡ λA :: prop. A

Initialization:

C =⇒ #C (init)

General situation: subgoals imply main goal

B1 =⇒ . . . =⇒ Bn =⇒ #C

Finalization:
#C
C (finish)

(Example: Goal directed proof and rule composition)

Pure rules everywhere 12

Rule composition (back-chaining)

~A =⇒ B B ′ =⇒ C B θ = B ′θ
~A θ =⇒ C θ

(compose)

~A =⇒ B
(~H =⇒ ~A) =⇒ (~H =⇒ B)

(=⇒-lift)

~A ~a =⇒ B ~a
(
∧
~x. ~A (~a ~x)) =⇒ (

∧
~x. B (~a ~x))

(
∧

-lift)

Pure rules everywhere 13

General higher-order resolution

rule: ~A ~a =⇒ B ~a

goal : (
V
~x. ~H ~x =⇒ B ′ ~x) =⇒ C

goal unifier : (λ~x. B (~a ~x)) θ = B ′θ

(
V
~x. ~H ~x =⇒ ~A (~a ~x)) θ =⇒ C θ

(resolution)

goal : (
V
~x. ~H ~x =⇒ A ~x) =⇒ C

assm unifier : A θ = H i θ (for some H i)

C θ
(assumption)

Both inferences are omnipresent in Isabelle/Isar:

• resolution: e.g. OF attribute, rule method, also command

• assumption: e.g. assumption method, implicit proof ending

Pure rules everywhere 14

Application: calculational reasoning

also0 = note calculation = this
alson+1 = note calculation = trans [OF calculation this]

finally = also from calculation

Example:

have a = b 〈proof 〉
also have . . . = c 〈proof 〉
also have . . . = d 〈proof 〉
finally have a = d .

Note: term “. . .” abbreviates the argument of the last statement

(Example: Calculations)

Pure rules everywhere 15

Isar statements

From contexts to statements

Idea:
• Avoid unwieldy logical formula, i.e.

no object-logic: ∀ x . A x → B x
no meta-logic:

∧
x . A x =⇒ B x

• Use native Isar context & conclusion elements
fixes x assumes A x shows B x corresponding to x , A x ` B x

Example:

theorem
fixes x and y
assumes a: A x and b: B y
shows C x y

proof −
from a and b show ?thesis 〈proof 〉

qed

Isar statements 17

Proof context elements

Universal: fix and assume
{

fix x
have B x 〈proof 〉

}
note 〈

V
x . B x 〉

{
assume A
have B 〈proof 〉

}
note 〈A =⇒ B 〉

Existential: obtain

{
obtain a where B a 〈proof 〉
have C 〈proof 〉

}
note 〈C 〉

Isar statements 18

Clausal Isar statements

Big clauses: fixes x assumes A x shows B x
based on primitive Isar context elements

Dual clauses: obtains a where B a . . . expands to
fixes thesis assumes

∧
a. B a =⇒ thesis and . . . shows thesis

Small clauses: B x if A x for x as second-level rule structure∧
x . A x =⇒ B x within big clauses

Experimental!

Isar statements 19

Example: Isar statements for predicate logic

theorem impI : assumes B if A shows A → B
theorem impE : assumes A → B and A shows B

theorem allI : assumes B x for x shows ∀ x . B x
theorem allE : assumes ∀ x . B x shows B a

theorem conjI : assumes A and B shows A ∧ B
theorem conjE : assumes A ∧ B obtains A and B

theorem disjI 1: assumes A shows A ∨ B
theorem disjI 2: assumes B shows A ∨ B
theorem disjE : assumes A ∨ B obtains A | B

theorem exI : assumes B a shows ∃ x . B x
theorem exE : assumes ∃ x . B x obtains a where B a

Isar statements 20

Inductive definitions

Primitive definitions

Definitional approach: everything produced from first principles
(of Higher-Order Logic, Set-Theory etc.)

Example: composition of relations

definition comp :: (α ⇒ β ⇒ bool) ⇒ (β ⇒ γ ⇒ bool) ⇒ α ⇒ γ ⇒ bool
where comp R S x z ↔ (∃ y. R x y ∧ S y z)

theorem compI : R x y =⇒ S y z =⇒ comp R S x z
unfolding comp-def by auto

theorem compE : comp R S x z =⇒ (
V

y. R x y =⇒ S y z =⇒ C) =⇒ C
unfolding comp-def by auto

Question: Can we avoid this redundancy?

Inductive definitions 22

Inductive definitions

Idea: the least predicate closed under user-specified rules
(according to Knaster-Tarski)

Example: transitive-reflexive closure

inductive trcl for R :: α ⇒ α ⇒ bool
where

trcl R x x for x
| trcl R x z if R x y and trcl R y z for x y z

Derived rules based on internal definition:
trcl ≡
λR. lfp (λp x 1 x 2.

(∃ x . x 1 = x ∧ x 2 = x) ∨
(∃ x y z . x 1 = x ∧ x 2 = z ∧ R x y ∧ p y z))

Inductive definitions 23

Non-recursive inductive definitions

Example (1): composition of relations (concise version)

inductive comp for R :: α ⇒ β ⇒ bool and S :: β ⇒ γ ⇒ bool
where comp R S x z if R x y and S y z for x y z

Example (2): logical connectives (imitating Coq)

inductive and for A B :: bool
where and A B if A and B

inductive or for A B :: bool
where or A B if A | or A B if B

inductive exists for B :: α ⇒ bool
where exists B if B a for a

(Example: Inductive definitions)

Inductive definitions 24

Conclusion

Summary

Advantages of native Pure/Isar rules:

• Scalable specifications

• Reduced complexity for formal proofs in

1. proving / using the results
2. structured Isar proofs / tactic scripts / internal proof objects

Consequences:

• Reduced formality — towards “logic-free reasoning”

• May have to unlearn predicate logic!

Conclusion 26

Related Work

• Proofs:

– Continuation of well-known Natural Deduction concepts
(Gentzen 1935, and others)

– Common principles shared with λ-Prolog (Miller 1991)

• Statements:

– Coherent logic (cf. Coquand, Bezem, dates back to Skolem)
– Euclid’s Elements (cf. Avigad)

• Definitions:

– Inductive definitions in Coq, HOL, Isabelle etc.
(many variations)

Conclusion 27

